

EU GCC CLEAN ENERGY TECHNOLOGY NETWORK

Join us: www.eugcc-cleanergy.net

Contact us: contact@eugcc-cleanergy.net

Tackling Climate Change How Hydrogen Enables the Energy Transition: a European Perspective.

Frank Wouters Director

Content

- 1. Changing energy paradigm
- 2. Growth of renewables
- 3. Our electricity system
- 4. Flexibility
- 5. Energy pathways
- 6. The hydrogen case for the Northern Netherlands
- 7. UAE: the car as power plant

CHANGING PARADIGM

The world of energy is transforming

Our 4D world

Decarbonization

Democratization

Transformation
of the
Energy System:
Electrification

Digitization

Decentralization

Cost of solar

Cost of energy

Solar PV

Location: Peru

Bidder: Enel Green Power

Signed: February 2016

Construction: 2017

Price: US\$ 4.8 c/kWh

Onshore wind

Location: Morocco

Bidder: Enel Green Power

Signed: January 2016

Construction: 2018

Price: US\$ 3.0 c/kWh

Solar PV

Location: Coahuila, Mexico Bidder: Enel Green Power

Signed: March 2016

Construction: 2018

Price: US\$ 3.6 c/kWh

Onshore wind

Location: Morocco

Bidder: Enel Green Power

Signed: January 2016

Construction: 2018

Price: US\$ 3.0 c/kWh

Solar PV

Location: Dubai

Bidder: Masdar Consortium

Signed: May 2016

Construction: 2019

Price: US\$ 2.99 c/kWh

Onshore wind

Location: Morocco

Bidder: Enel Green Power

Signed: January 2016

Construction: 2018

Price: US\$ 3.0 c/kWh

Solar PV

Location: Chile

Bidder: Solarpack Corporation

Signed: August 2016

Construction: 2019

Price: US\$ 2.91 c/kWh

Onshore wind

Location: Morocco

Bidder: Enel Green Power

Signed: January 2016

Construction: 2018

Price: US\$ 3.0 c/kWh

CSP

Location: Dubai

Bidder: Acwa Power

Signed: September 2017

Construction: 2020

Price: US\$ 7.3 c/kWh

Offshore wind

Location: German North Sea

Bidder: Dong

Signed: April 2017 Construction: 2021-2025

Price: US\$ 5.2 c/kWh

Reducing cost

Evolution of wind turbine heights and output

Sources: Various; Bloomberg New Energy Finance

Moving to the majority in new capacity additions

Source: IRENA

GROWTH OF RENEWABLES

How energy technologies grow

Growth into materiality

↑ Installed capacity (GW)

Exponential growth

- Imagine I give you a large piece of paper and ask you to fold it,
- then please fold it again,
- and again.
- A total of fifty times.
- How tall is the paper stack?

Predictions by the establishment.....

Annual PV additions: historic data vs IEA WEO predictions

In GW of added capacity per year - source International Energy Agency - World Energy Outlook

EU-GCC

How markets develop (MW)

Source: BP Statistical Review of World Energy 2013

Our electricity system

Average daily summer spot price profile in Germany, 2010 and 2013 (EUR/MWh)

Source: EEX; BNEF

Conventional Set-up

Distribution

Transmission

Generation

Transmission

Transformation

Distribution

Consumption

Privatization

Utilities Utilities Consumers

Generation

Transmission

Transformation

Distribution

Consumption

Democratization

Utilities

Utilities

Prosumers

Distribution

Transmission

Not only winners

Last updated: September 20, 2013 3:46 pm

RWE to halve dividend amid renewables boom

By Chris Bryant in Frankfurt

RWE plans to cut its dividend by half and lower future investor payouts in response to a slide in profits in conventional power generation caused in part by the boom in renewable energy.

The German utility is set to propose a dividend of €1 a share at its next annual

meeting, down from the €2 it paid shareholders last year.

Flexibility

CLEAN ENERGY FLIPS ELECTRIC GRID ON ITS HEAD

Fast peaking (e.g. gas combustion turbine) WITH BASELOAD Electricity Demand Intermediate peaking (e.g. natural gas combined cycle) Baseload (coal or nuclear) 1 AM 3 AM 5 AM 7 AM 9 AM 11 AM 1 PM 3 PM 5 PM 7 PM 9 PM 11 PM Time of day

 1 AM 3 AM 5 AM 7 AM 9 AM 11 AM 1 PM 3 PM 5 PM 7 PM 9 PM 11 PM

 Time of day

EU-GCC Cleanergy.Net Decarbonization

⊒ – Democratization Transformation
of the
Energy System:
Electrification

1010 6 0010 1 0010 1 0010 1010 1010 100 10110 10

Digitization

010010

Decentralization

Flexibility tools

- 1. Dispatchable power
- 2. Demand response
- 3. Storage
- 4. Interconnectivity

Energy Pathways: Hydrogen

Future 4D energy pathways

Main 4D pathways

Electricity and **Hydrogen** are the two main energy carrier pathways in a 4D world.

Considerations:

- Ability to replace fossil fuels in transport
- Ease of transporting over longer distances
- Versatility of role in the economy: transport, buildings, chemistry
- Ability to use as storage medium
- Cost
- Infrastructure

The hydrogen case for the Northern Netherlands

Offshore Wind Development Germany

Electricity and Gas Transport Grid

Hydrogen storage in salt caverns

Green hydrogen markets

Chemical Feedstock

Transport

Electricity Balancing

Heating

Delfzijl chemical site

Ammonia, Methanol, Hydrogen-Peroxide production

Hydrogen Pipelines Netherlands-Belgium-France

Green Hydrogen Economy Northern Netherlands 2030

Green Hydrogen Economy Northern Netherlands 2030

UAE: the car as power plant

Our car: 100 year unchanged

Our car: efficiency

Energy efficiency low 0.80*0.25*0.80*0.94*0.95*0.85*0.05 = **0.006**

Energy efficiency high 0.85*0.40*0.85*0.95*0.98*0.90*0.10 = 0.024

FROM A TO B TOTAL

0.6-2.4%

What this means:

Our traditional car is a moving stove! From A to B more then 97% of the energy gets lost.

And, we only use our car on average 1 hour per day, which is only 4% of the time!

Our cars take over power plants

Power plants

Total installed capacity (2010) 5.000 GW

Cars

1 car = 50 kW

1.000 million cars (2010)

1.000 million x 50 kW =

50.000 GW

(5% of time in operation)

New cars

1 new car = 100 kW

80 million new cars per year

80 million x 100 kW =

8.000 GW

per year

Driving is 50% cheaper

Cost of electricity is 7ct/kWh, which is the same as now

A low cost energy producer, both fossil and solar

- 5 million cars
- 100 billion km/year
- Requires 1 billion kg H₂

- Electrolysers
- Land use less than 4%
- Costs \$2/kg

5% of the residential drinking water

Thank You